Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE J Transl Eng Health Med ; 12: 401-412, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606393

RESUMO

Osteoporosis is a prevalent chronic disease worldwide, particularly affecting the aging population. The gold standard diagnostic tool for osteoporosis is Dual-energy X-ray Absorptiometry (DXA). However, the expensive cost of the DXA machine and the need for skilled professionals to operate it restrict its accessibility to the general public. This paper builds upon previous research and proposes a novel approach for rapidly screening bone density. The method involves utilizing near-infrared light to capture local body information within the human body. Deep learning techniques are employed to analyze the obtained data and extract meaningful insights related to bone density. Our initial prediction, utilizing multi-linear regression, demonstrated a strong correlation (r = 0.98, p-value = 0.003**) with the measured Bone Mineral Density (BMD) obtained from Dual-energy X-ray Absorptiometry (DXA). This indicates a highly significant relationship between the predicted values and the actual BMD measurements. A deep learning-based algorithm is applied to analyze the underlying information further to predict bone density at the wrist, hip, and spine. The prediction of bone densities in the hip and spine holds significant importance due to their status as gold-standard sites for assessing an individual's bone density. Our prediction rate had an error margin below 10% for the wrist and below 20% for the hip and spine bone density.


Assuntos
Densidade Óssea , Osteoporose , Humanos , Idoso , Osteoporose/diagnóstico , Osso e Ossos , Absorciometria de Fóton/métodos , Coluna Vertebral
2.
Phys Eng Sci Med ; 44(4): 1221-1230, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34550551

RESUMO

Brain-computer interfaces (BCIs) acquire electroencephalogram (EEG) signals and interpret them into a command that helps people with severe motor disabilities using single channel. The goal of BCI is to achieve a prototype that supports disabled people to develop the relevant function. Various studies have been implemented in the literature to achieve a superior design using multi-channel EEG signals. This paper proposed a novel framework for the automatic P300 detection-based BCI model using a single EEG electrode. In the present study, we introduced a denoising approach using the bandpass filter technique followed by the transformation of scalogram images using continuous wavelet transform. The derived images were trained and validated using a deep neural network based on the transfer learning approach. This paper presents a BCI model based on the deep network that delivers higher performance in terms of classification accuracy and bitrate for disabled subjects using a single-channel EEG signal. The proposed P300 based BCI model has the highest average information transfer rates of 13.23 to 26.48 bits/min for disabled subjects. The classification performance has shown that the deep network based on the transfer learning approach can offer comparable performance with other state-of-the-art-method.


Assuntos
Interfaces Cérebro-Computador , Algoritmos , Eletroencefalografia , Humanos , Redes Neurais de Computação , Análise de Ondaletas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...